Development of a New Unresolved Resonance Region Analysis Methodology

Andrew Holcomb^{1,3}

with Luiz Leal², Farzad Rahnema³, and Doro Wiarda¹

¹ Nuclear Data & Criticality Safety Group, Oak Ridge National Laboratory

² Institut de Radioprotection et de Sûreté Nucléaire

³ Georgia Institute of Technology

NCSP Technical Program Review Sandia National Laboratories March 15-16, 2016

Outline

- Objective
- Background
- New Unresolved Resonance Region Methodology
- Results
 - Resolved Resonance Region (RRR)
 - Test Cases: Energy-Differential and Double-Differential XS's in RRR for ¹⁶O, ¹⁹F, ³⁵CI, ⁵⁶Fe, ⁶³Cu, ⁶⁵Cu
 - Unresolved Resonance Region (URR)
 - Updated ²³⁸U cross section probability tables
 - International Criticality Safety Benchmark Evaluation Project (ICSBEP) benchmarks: IEU-COMP-FAST-004, IEU-MET-FAST-003, and IEU-MET-FAST-007
- Conclusions and Future Work

Objective

- Create a modern implementation of the R-Matrix Limited algorithm
 - Help achieve goal of updating AMPX code to modern language (C++)
- Develop an unresolved resonance region (URR) analysis methodology consistent with the methodology used in the resolved resonance region (RRR)
 - Improve model fidelity for criticality safety and shielding problems

²³⁸U Elastic Scattering Cross Section at 0K [1]

Advantages of Reich-Moore Approximation

- Closest to full R-Matrix (too complex)
- Treats capture channels in an aggregate manner, but:
 - Allows multiple inelastic channels and charged particle channels, like (n,α), (n,p), etc
 - All other reactions take into account channel-channel and level-level interference:

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E} \delta_{JJ'}$$

Temperature effects

- So far, equations only generate $\sigma_{\chi}(E, T=0)$
 - Temperature of media (not single nuclei) gives rise to distribution of velocities [3]:

$$v\sigma_{Doppler}(mv^2/2) \equiv \int d^3V p(\vec{V}) |\vec{v} - \vec{V}| \sigma(m|\vec{v} - \vec{V}|^2/2)$$

• $p(\vec{V})$ not known, assume Maxwell-Boltzmann distribution to get free-gas model:

$$\sigma_{Doppler}(mv^{2}/2) = \frac{1}{\sqrt{\pi}v^{2}u} \int_{0}^{\infty} dr \, r^{2}\sigma(mr^{2}/2) \left[e^{-\left(\frac{v-r}{u}\right)^{2}} - e^{-\left(\frac{v+r}{u}\right)^{2}} \right]$$

URR Cross Section Reconstruction

- Only have average parameter values, so XS's must be generated using a statistical sampling technique
 - Sample resonance level spacing around each energy of reference, sample resonance width of each reaction, then calculate XS at reference energy
 - Used to generate probability table for XS sampling during neutronics calculation
- Currently, only one cross section formalism is available... Single-Level Breit-Wigner

URR Probability Table

New Unresolved Resonance Region Methodology

- Samples resonance spacing and widths in a way analogous to PURM (Wigner and Chi-Square distributions)
 - Generates Reich-Moore (RM) parameter set
 - Takes channel input from supplemental user input
 - Resamples for additional channels as necessary
 - Updates parameter sampling based on grid position
- Cross-Section calculation
 - SLBW approximation is replaced by the more robust RM formalism
 - Temperature broadening via Leal-Hwang method [6,7]
 - Requires energy grid [8]

Example

Sample...

²³⁸U Sample History Reconstruction - Unbroadened

Broaden...

²³⁸U Sample History Reconstruction - Doppler Broadened

Repeat many times...

238U Sample Batch

• Bin results, create probability table!

²³⁸ U Elastic Scattering XS a	at 20 keV, 300 K
--	------------------

Bin	Probability	XS (b)	$d\sigma$ (b)
1	0.2	9.61	1.04
2	0.2	11.43	0.39
3	0.2	12.87	0.46
4	0.2	14.84	0.72
5	0.2	20.46	4.24

Results - Resolved Resonance Region

- Tested new RML module by reconstructing energydifferential and double-differential cross sections for:
 - ¹⁶O (n, α) reaction above 2.4 MeV
 - 19F two inelastic excitations in RRR
 - ³⁵Cl (n, p) reaction with no threshold energy
 - 56Fe single inelastic reaction in RRR
 - 63Cu and 65Cu only elastic scattering and capture, different masses but same negative-parity ground state

Results – Unresolved Resonance Region

- Probability table generated for ²³⁸U for all energies of reference given in the ENDF file
 - Generated using both PURM and new method
 - PURM results
 - generated at 293.6 K
 - -60,000 histories
 - parameters sampled from E_{ref} only
 - New method results
 - generated at 293.6 K
 - 30,000 histories
 - parameters taken from nearest neighbor

- Grid justification...
 - RML formalism does not allow single-point broadening
 - Best-case scenario:

Example of Best-Case Scenario for LH Routine for ²³⁸U

– Worst-case scenario:

²³⁸U Total Cross Section at 0K for Worst-Case Broadening Scenario

Worst-Case Broadening Scenario at \boldsymbol{E}_{ref}

Worst-Case Broadening Scenario

Probability Table for ²³⁸U at 140 keV and 293.6 K

²³⁸U Normalized Total Cross-Section Factors at 140keV and 293.6K

²³⁸U Normalized Elastic Cross-Section Factors at 140keV and 293.6K

$^{238}\mathrm{U}$ Normalized Capture Cross-Section Factors at 140keV and 293.6K

²³⁸U Normalized Inelastic Cross-Section Factors at 140keV and 293.6K

Benchmark Problems

- Benchmark problems run using MCNP ENDF/BVII.0 libraries and ENDF/BVII.1 libraries [9]
 - Modified ²³⁸U library by overwriting probability tables with new results
- Benchmarks chosen for ²³⁸U sensitivity [10]
 - IEU-MET-FAST-007 (Big Ten)
 - IEU-MET-FAST-003 (bare sphere)
 - IEU-COMP-FAST-004 (ZPR-3 Assembly 12)

IEU-MET-FAST-007 Results

Library	Probability Tables	MCNP5v1.6	MCNP6.1
Benchmark			1.0049 ± 0.0008
ENDF/BVII.0	No	1.00098 ± 0.00007	1.00098 ± 0.00007
ENDF/BVII.0	Yes	1.00492 ± 0.00008	1.00492 ± 0.00008
ENDF/BVII.0+Modified ²³⁸ U	No	1.00098 ± 0.00007	1.00098 ± 0.00007
ENDF/BVII.0+Modified ²³⁸ U	Yes	1.00537 ± 0.00007	1.00537 ± 0.00007
ENDF/BVII.1	No	1.00089 ± 0.00007	1.00089 ± 0.00007
ENDF/BVII.1	Yes	1.00453 ± 0.00007	1.00453 ± 0.00007
ENDF/BVII.1+Modified ²³⁸ U	No	1.00089 ± 0.00007	1.00089 ± 0.00007
ENDF/BVII.1+Modified ²³⁸ U	Yes	1.00531 ± 0.00007	1.00531 ± 0.00007

IEU-MET-FAST-003 Results

Library	Probability Tables	k_{eff}
Benchmark		1.0000 ± 0.0017
ENDF/BVII.1	No	1.00266 ± 0.00009
ENDF/BVII.1	Yes	1.00222 ± 0.00009
ENDF/BVII.1+Modified ²³⁸ U	No	1.00266 ± 0.00009
ENDF/BVII.1+Modified ²³⁸ U	Yes	1.00204 ± 0.00009

IEU-COMP-FAST-004 Results

Library	Probability Tables	k_{eff}
Benchmark		0.9982 ± 0.0015
ENDF/BVII.1	No	0.99833 ± 0.00008
ENDF/BVII.1	Yes	0.99995 ± 0.00009
ENDF/BVII.1+Modified ²³⁸ U	No	0.99833 ± 0.00008
ENDF/BVII.1+Modified ²³⁸ U	Yes	1.00052 ± 0.00008

Conclusions and Future Work

- Developed a new URR methodology consistent with RRR treatment
 - RML algorithm rigorously tested for variety of isotopes
 - New ²³⁸U probability tables in good agreement with current standards
 - Demonstrated excellent agreement with several ²³⁸Usensitive benchmark problems
- Moving forward...
 - Code parallelization
 - Investigate sensitivity to energies of reference
 - Other isotopes, problems

Acknowledgement

This work was supported by the US Department of Energy Nuclear Criticality Safety Program

References

- [1] TRKOY, A., HERMAN, M., and BROWN, D., "ENDF-6 Formats Manual," tech. rep., Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, Upton, New York, 2011.
- [2] FODERARO, A., The Elements of Neutron Interaction Theory, MIT Press, 1971.
- [3] LARSON, N. M., MOXON, M. C., LEAL, L. C., and DERRIEN, H., "Doppler Broadening Revisited," ORNL/TM-13525, Oak Ridge National Laboratory, 1998.
- [4] D. Wiarda, M. L. Williams, C. Celik, and M. E. Dunn, "AMPX: A Modern Cross-Section Processing System For Generating Nuclear Data Libraries," ICNC 2015, Charlotte, North Carolina, September 13–17, 2015.
- [5] DUNN, M. E. and LEAL, L. C., "Calculating Probability Tables for the Unresolved-Resonance Region Using Monte Carlo Methods," Proceedings of the International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High Performance Computing (PHYSOR 2002), Seoul, Korea, October 7-10, 2002.
- [6] LEAL, L. C. and HWANG, R., "A Finite Difference Method for Treating the Doppler Broadening of Neutron Cross Sections," in *American Nuclear Society*, (Los Angeles, CA), Nov. 1987.
- [7] HART, S. W. D., "Automated Doppler Broadening of Cross Sections for Neutron Transport Applications. "PhD diss., University of Tennessee, 2014. http://trace.tennessee.edu/utk_graddiss/3136
- [8] DUNN, M. E. and GREENE, N. M. "POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data," ORNL/TM-2000-035, Oak Ridge National Laboratory, 2000.
- [9] T. Goorley, et al., "Initial MCNP6 Release Overview", Nuclear Technology, 180, pp 298-315 (Dec 2012).
- [10] "INTERNATIONAL HANDBOOK OF EVALUATED CRITICALITY SAFETY BENCHMARK EXPERIMENTS," NEA/NSC/DOC(95)03/I-VIII, OECD-NEA, September, 2004.

